Vaccinare i guariti un errore: finiscono in maggior numero in ospedale dopo la vaccinazione

La percentuale di persone guarite da COVID che hanno bisogno di ospedalizzazione a seguito di una nuova infezione da SARS-CoV2 è maggiore tra quelle che hanno ricevuto anche il vaccino, rispetto a quelle che non sono state vaccinate. Lo stesso dato si riscontra sia per la Terapia Intensiva che per i decessi. I dati ISS diffusi il 24 febbraio 2023 confermano la valenza e l’efficacia dell’immunità naturale, acquisita a seguito di infezione, rispetto all’immunità ibrida (infezione associata a vaccinazione)! …

La denuncia del  Coordinamento Comitati Guariti da Covid 

Come riportato nei testi specialistici di medicina e biologia, il sistema immunitario di chi ha già contratto un patogeno è per sé in grado, senza necessità di alcun “rinforzo”, di fronteggiare adeguatamente un eventuale reincontro con lo stesso agente infettivo. 

Nel caso del SARS-Cov2, ai primi studi che dimostravano (Wajnberg et al. 2020) come l’immunità umorale permanesse per almeno i cinque mesi successivi all’infezione, si sono susseguite le evidenze che dimostrano come l’immunità naturale umorale, derivante dall’aver contratto l’infezione, perduri per almeno 20 mesi (Alejo et al., 2022; Yang et al., 2022) e che nei guariti è rilevabile una immunità cellulare di memoria permanente (Wang et al., 2021; Ng et al., 2016; Rodda et al., 2021; Cohen et al., 2021; Ansari et al., 2021; Bilich et al., 2021; Turner et al., 2021; Jeffery-Smith et al., 2021; Le Bert et al., 2021; Breathnach et al., 2021; Winklemeier et al., 2022; Martner et al., 2022; Gao et al., 2022). 

In base alle analogie osservate con altri coronavirus umani e animali (dalla cui infezione è derivata una immunità eccezionalmente duratura e sicuramente rilevabile fino a 18 anni (Ng et al., 2016; Le Bert et al., 2020; Kojima et al., 2021), si può ragionevolmente affermare che l’immunità acquisita con l’infezione da SARS-CoV2 permane stabilmente nel tempo! 

Nel mese di settembre 2022, ha avuto notevolissima rilevanza mediatica l’ampio studio italiano dell’Istituto Altamedica, presentato dal Prof. Giorlandino al congresso della Società Italiana di Genetica Umana (Margiotti et al., 2022) che, assieme alla recente revisione narrativa sul ruolo dell’immunità naturale (Diani et al., 2022), nonché al recente articolo apparso su Biomedicines (Ferraresi e Isidoro, 2022), ha confermato tutte le precedenti conoscenze sulla valenza dell’immunità naturale. 

Come può rilevarsi dall’ultimo Report Esteso pubblicato dall’Istituto Superiore di Sanità il 3 marzo 2023, le reinfezioni, dal 24 agosto 2021 a oggi, rappresentano solo l’8,5% dei casi (un dato che peraltro, include anche i doppi fallimenti vaccinali in persone reinfettate nonostante la vaccinazione). 

Anche il nuovo rapporto dell’ISS (del 24 febbraio 2023) dal titolo: “Impatto della vaccinazione e della pregressa diagnosi sul rischio di malattia grave associata a SARS-CoV-2, in cui si confrontano il numero dei casi di ospedalizzazione, ricovero in TI e morte tra soggetti vaccinati o non vaccinati reinfettati, evidenzia chiaramente che la protezione fornita dall’immunità naturale (acquisita tramite pregressa infezione da 90 a oltre 360 giorni) è maggiore di quella derivante da immunità ibrida (infezione naturale preceduta o seguita da ciclo vaccinale), con differenze di oltre 15 punti percentuali, ad eccezione dei casi di ricovero in TI nella fascia di età sotto i 60 anni ove i dati sono sostanzialmente simili

Ancora una volta, quindi, viene confermato che: 

la pregressa infezione produce un’immunità protettiva di estrema efficacia e di lunga durata anche nei confronti delle nuove VOC che, qualora si verifichi il raro evento della reinfezione, è efficacemente protettiva anche da malattia grave, ospedalizzazione e morte (Chemaitelly et al., 2022; Altarawneh et al., 2022; Flacco et al., 2022; Nyberg et al., 2022; Wolter et al., 2022; Pilz et al., 2022; Gazit et al., 2022; Goldberg et al., 2022; Azzi et al., 2021; Reddy et al., 2021; Neidleman et al., 2021; Sheikh-Mohamed et al. 2022; Jassat et al., 2022). Come è emerso dalla recentissima ampia metanalisi pubblicata su The Lancet (COVID-19 Forecasting Team, 2023), la protezione contro la malattia grave per tutte le varianti rimane elevata fino a oltre 15 mesi; 

la carica virale dei soggetti guariti e poi reinfettati è bassa (e comunque di molto inferiore a quella dei soggetti vaccinati anche con booster), e quindi con esigua potenzialità di diffusione virale (Kuhlmann et al., 2022; Abu-Raddad et al., 2022; Letizia et al., 2021; Pilz et al., 2022; McGonagle, 2022); 

❖ la vaccinazione nei guariti produce un beneficio insignificante (Nordström et al., 2022; Shenai et al. 2021; Medic et al., 2022; Gazit et al., 2021) mentre espone i soggetti a una percentuale di effetti avversi superiore fino al 60% rispetto ai soggetti COVID-naive (d’Arminio Monforte et al., 2021; Mathioudakis et al., 2021; Menni et al., 2021; Raw et al. 2022; Debes et al., 2021; Zappa et al., 2021; Joob et al., 2021; Angeli et al., 2022; Krammer et al., 2021; Kings College London COVID Symptom Study, 2021, Tré-Hardy et al., 2021, Buonfrate et al., 2021; Barda et al., 2021) con rischio doppio di miocardite grave, rispetto ai soggetti vaccinati senza infezione (Patone et al., 2022), senza differenze significative per sesso e costanti in relazione alle successive dosi somministrate (Raw et al., 2023); 

❖ una recente pubblicazione su Science (Reynols et al. 2022) cita il fenomeno dello “smorzamento immunitario ibrido”, descrivendo come la combinazione di infezione e successiva vaccinazione (c.d. immunità ibrida) determinerebbe un impatto negativo sulla successiva immunità protettiva nei confronti della VOC Omicron e dei suoi sottolignaggi. Ciò è confermato da un recente studio su NEJM (Lin et al., 2022) in cui si evidenzia, in un’ampia corte di bambini dai 5 agli 11 anni, che la successiva vaccinazione riduce la protezione fornita dall’immunità naturale contro le reinfezioni: mentre l’efficacia dell’immunità naturale dopo 8 mesi è ancora attestata al 55%, quella ibrida nei confronti della VOC Delta si azzera in 7 mesi; 

non vi è differenza alcuna tra immunità naturale e immunità ibrida nel prevenire i rischi correlati a una successiva reinfezione o infezione post vaccinale (Al-Aly et al., 2022); anzi, nella fascia di età dai 5 agli 11 anni, l’immunità ibrida mostra efficacia negativa dopo soli cinque mesi (Lin et al., 2022); 

gli attuali vaccini non hanno attività sterilizzante (confermato dalla Dr.ssa Janine Small, responsabile per i mercati internazionali della casa farmaceutica Pfizer BionThec, nel corso dell’audizione al Parlamento Europeo del 10 ottobre 2022). Pertanto, gli obblighi imposti ex-lege al fine di prevenire il contagio, non potevano essere assolti con questi “vaccini”; 

❖ l’effetto immunizzante dei vaccini degrada rapidamente nel tempo e, a seguito di multiple somministrazioni, si osserva finanche una efficacia negativa e aumentata mortalità (Nordstrom et al., 2022; Tseng et al., 2022; Chemiatelly et al., 2022; Andrews et al., 2022; Emani et al., 2022); 

Stato vaccinaleVOC Delta (16 agosto 2021-5 dicembre 2021)VOC Omicron (dal 27 dicembre 2021 al 20 marzo 2022)Tutte le persone12.50611.604Non vaccinato2.578 (20,6%)1.771 (15,3%)Tutti vaccinati9.828 (78,6%)9.766 (84,2%)1 sola dose386 (3,1%)386 (3,3%)Due dosi9.442 (75,5%)2.929 (25,2%)Terza dose-6.451 (55,6%)Stato vaccinale sconosciuto100 (0,8%)67 (0,6%)* Decessi totali SARS-CoV2 (tutti i gruppi di età-intera popolazione NIMS)*Emani et al., 2022, Increasing SARS-Cov2 Cases, Hospitalizations, and Deaths among the Vaccinated Populations during the Omicron (B.1.1.529) Variant Surge in UK

❖ come accertato dai consulenti tecnici della Procura della Repubblica di Siracusa nel “caso Paternò”, esiste correlazione eziologica tra la presenza di IgG per SARS-CoV2 (che indicano una pregressa infezione) e la morte per disregolazione immunitaria (ADE) avvenuta a seguito di successiva vaccinazione antiCOVID. 

 

Va, inoltre, considerato che: 

non esistono dati sperimentali relativi alla vaccinazione di soggetti guariti, dal momento che gli stessi sono stati esclusi aprioristicamente da tutti i trials pre-marketing condotti dalle case farmaceutiche produttrici dei vaccini; da sottolineare che tale esclusione, motivata dal fatto che avrebbe inficiato i risultati sull’efficacia, trova fondamento proprio nell’assunto che i guariti sono già protetti e la vaccinazione non avrebbe rilevato alcun incremento dell’immunizzazione; 

la prescrizione degli interventi sanitari deve fondarsi sulle evidenze scientifiche disponibili, sull’uso ottimale delle risorse e sul rispetto dei principi di efficacia clinica, di sicurezza e di appropriatezza, valutando l’applicabilità al caso specifico delle linee guida diagnostico-terapeutiche, non intraprendendo né insistendo in interventi terapeutici clinicamente inappropriati ed eticamente non proporzionati, dai quali non ci si possa fondatamente attendere un effettivo beneficio per la salute e/o un miglioramento della qualità della vita (cfr. Codice di Deontologia Medica); 

❖ Il Dr. Giovanni Rezza, già Direttore della Direzione Generale della Prevenzione Sanità del Ministero della Salute, nel corso del programma televisivo “Fuori dal Coro” del 13 settembre 2022, con riguardo ai guariti da COVID, ha affermato testualmente che: “siccome ci sono delle novità rispetto a uno o due anni fa, sicuramente questo è un punto che è sotto revisione. Invero, le ultime Circolari Ministeriali (nr. 51961 del 31 dicembre 2022 e nr. 01 del 1 gennaio 2023) continuano a non distinugere affatto tra soggetti con pregressa infezione e soggetti COVID-naive, non tenendo in alcun conto la circostanza della pregressa guarigione; 

le numerose evidenze scientifiche che si sono susseguite sulla vaccinazione ai guariti hanno dimostrato e stanno dimostrando, come sopra già esposto, che richiedere una vaccinazione per i soggetti con pregressa infezione sottopone gli stessi a gravissimo rischio, esponendoli a fenomeni patologici da disregolazione immunitaria (fenomeni trombotici, autoimmunitari, iperinfiammatori, fino a potenziale exitus), a fronte di un beneficio pressoché nullo per sé stessi e per la comunità. Un recente articolo spiega i meccanismi immunopatologici e fisiopatologici alla base delle patologie cardiovascolari che possono sopravvenire a seguito di vaccinazioni multiple o di vaccinazione successiva a infezione o seguita da infezione (Bellavite, Ferraresi, Isidoro Biomedicines 2023). 

Sicchè, di norma, il guarito, in caso di nuovo contatto con l’antigene virale, può risultare nuovamente positivo – e anche sintomatico – ma il suo sistema immunitario è comunque in grado autonomamente di elicitare una valida risposta immunitaria capace di fronteggiare l’infezione in maniera efficace ed efficiente, senza rischi per sé stesso e per gli altri. 

Per tutto quanto sopra esposto, si ritiene che non sia più procrastinabile il NON RACCOMANDARE una successiva vaccinazione ai soggetti guariti. 

BIBLIOGRAFIA 

Abu-Raddad LJ, Chemaitelly H et al. (2021), Severity of SARS-CoV-2 Reinfections as Compared with Primary Infections, DOI: 10.1056/NEJMc2108120, 

https://www.nejm.org/doi/full/10.1056/NEJMc2108120 

Abu-Raddad, L. J., Chemaitelly, H., Ayoub, H. H., Tang, P., Coyle, P., Hasan, M. R., … & Bertollini, R. (2022). Relative infectiousness of SARS-CoV-2 vaccine breakthrough infections, reinfections, and primary infections. Nature Communications, 13(1), 1-11. https://www.nature.com/articles/s41467-022-28199-7 

Al-Aly, Z., Bowe, B., & Xie, Y. (2022). Outcomes of SARS-CoV-2 Reinfection. Outcomes of SARS-CoV-2 Reinfection | Research Square 

Alejo JL, Mitchell J et al. (2022), Prevalence and Durability of SARS-CoV-2 Antibodies Among Unvaccinated US Adults by History of COVID-19, JAMA. Published online February 3, 2022. doi:10.1001/jama.2022.1393. https://jamanetwork.com/journals/jama/fullarticle/2788894 

Alshammari, F., Alzomia, M., Korairi, A., Alajlan, M., Abuzied, Y., & AlSheef, M. (2022). Bullous pemphigoid after second dose of mRNA-(Pfizer-BioNTech) Covid-19 vaccine: A case report. Annals of Medicine and Surgery, 103420. https://www.sciencedirect.com/science/article/pii/S2049080122001807?via%3Dihub 

Altarawneh, H. N., Chemaitelly, H., Hasan, M. R., Ayoub, H. H., Qassim, S., AlMukdad, S., … & Abu-Raddad, L. J. (2022). Protection against the omicron variant from previous SARS-CoV-2 infection. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMc2200133 

Andrews N., Stowe J. et al. (2022). Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant, New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMoa2119451 

Angeli, F., Spanevello, A., Reboldi, G., Visca, D., & Verdecchia, P. (2021). SARS-CoV-2 vaccines: Lights and shadows. European journal of internal medicine, 88, 1-8. SARS-CoV-2 vaccines: Lights and shadows – PubMed (nih.gov) 

ANSA Sicilia, Periti, ‘correlazione eziologica vaccino Az-morte militare’, Periti, ‘correlazione eziologica vaccino Az-morte militare’ – Sicilia – ANSA.it

Ansari, A., Arya, R., Sachan, S., Jha, S. N., Kalia, A., Lall, A., … & Gupta, N. (2021). Immune memory in mild COVID-19 patients and unexposed donors reveals persistent T cell responses after SARS-CoV-2 infection. Frontiers in immunology, 12, 749. https://www.frontiersin.org/articles/10.3389/fimmu.2021.636768/full?fbclid=IwAR2CVCNKecDvKJr39W7AKKOtC7XTYwbp8pbM4KHqcFK8GddVm7vbk13WwHc 

Akkaya M, Kwak K, Pierce SK (2019), B cell memory: building two walls of protection against pathogens, Nature Reviews Immunology volume 20, pages 229–238 (2020), https://www.nature.com/articles/s41577-019-0244-2 

Azzi, L., Dalla Gasperina, D., Veronesi, G., Shallak, M., Ietto, G., Iovino, D., … & Forlani, G. (2022). Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine, 75, 103788. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients – eBioMedicine (thelancet.com) 

Badshah M, Shriver J et al. (2021), MODERNA mRNA-1273 vaccine-associated myopericarditis in a patient with a subclinical autoimmune predisposition, Journal of Cardiology Cases 2021 Nov; 24(5): 227–229 Published online 2021 Oct 2. doi: 10.1016/j.jccase.2021.09.007, PMCID: PMC8617476 PMID: 34868402, https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8617476/ 

Bailly-Caillé, B., Jouen, F., Dompmartin, A., & Morice, C. (2022). A Case Report of Anti-P200 Pemphigoid Following COVID-19 Vaccination. JAAD Case Reports. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923033/ 

Ballout, A. A., Babaie, A., Kolesnik, M., Li, J. Y., Hameed, N., Waldman, G., … & Najjar, S. (2022). A Single-Health System Case Series of New-Onset CNS Inflammatory Disorders Temporally Associated With mRNA-Based SARS-CoV-2 Vaccines. Frontiers in Neurology, 13, 796882-796882. https://www.frontiersin.org/articles/10.3389/fneur.2022.796882/full 

Bellavite, P. (2021). Renin-Angiotensin System, SARS-CoV-2 and Hypotheses about Adverse Effects Following Vaccination. EC Pharmacology and Toxicology, 9, 01-10. 345_2021_ECPharmacologyToxicology-Def.pdf (paolobellavite.it) 

Bellavite, P., Ferraresi, A., & Isidoro, C. (2023). Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines, 11(2), 451. Biomedicines | Free Full-Text | Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines (mdpi.com)

Bertollini, R., Chemaitelly, H., Yassine, H. M., Al-Thani, M. H., Al-Khal, A., & Abu-Raddad, L. J. (2021). Associations of Vaccination and of Prior Infection With Positive PCR Test Results for SARS-CoV-2 in Airline Passengers Arriving in Qatar. JAMA. https://jamanetwork.com/journals/jama/article-abstract/2781112 

Bertoletti, A., Tan, A. T., & Le Bert, N. (2021). The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role. Oxford Open Immunology, 2(1), iqab006. https://academic.oup.com/ooim/article/2/1/iqab006/6146940 

Bilich, T., Nelde, A., Heitmann, J. S., Maringer, Y., Roerden, M., Bauer, J., … & Walz, J. S. (2021). T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Science translational medicine, 13(590), eabf7517. https://pubmed.ncbi.nlm.nih.gov/33723016/ 

Bova, C., Vigna, E., & Gentile, M. (2022). Multisystem Inflammatory Syndrome after Ad26. COV2. S Vaccination. IDCases, e01411. https://www.sciencedirect.com/science/article/pii/S2214250922000397?via%3Dihub 

Buonfrate, D., Piubelli, C., Gobbi, F., Martini, D., Bertoli, G., Ursini, T., … & Bisoffi, Z. (2021). Antibody response induced by the BNT162b2 mRNA COVID-19 vaccine in a cohort of health-care workers, with or without prior SARS-CoV-2 infection: a prospective study. Clinical Microbiology and Infection, 27(12), 1845-1850. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(21)00416-X/fulltext 

Calabria, E., Canfora, F., Mascolo, M., Varricchio, S., Mignogna, M. D., & Adamo, D. (2022). Autoimmune mucocutaneous blistering diseases after SARS-Cov-2 vaccination: a case report of pemphigus vulgaris and a literature review. Pathology-Research and Practice, 153834. https://www.sciencedirect.com/science/article/pii/S0344033822000772?via%3Dihub 

Cañete PF, Vinuesa CG (2020), COVID-19 Makes B Cells Forget, but T Cells Remember, Cell 2020 Oct 1;183(1):13-15. doi: 10.1016/j.cell.2020.09.013. Epub 2020 Sep 4, https://pubmed.ncbi.nlm.nih.gov/32976799/ 

Carlsson M, Soderberg-Nauclér C, (2021), Indications that Stockholm has reached herd immunity, given limited restrictions, against several variants of SARS-CoV-2, MedRxiv, https://www.medrxiv.org/content/10.1101/2021.07.07.21260167v1 

Cele, S., Jackson, L., Khoury, D. S., Khan, K., Moyo-Gwete, T., Tegally, H., … & Sigal, A. (2021). Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature, 1-5. https://www.nature.com/articles/s41586-021-04387-1

Center for Disease Control and Prevention (2021), Selected adverse events reported after COVID-19 vaccination, https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html 

Centers for Disease Control and Prevention. (2020). Common investigation protocol for investigating suspected SARS-CoV-2 reinfection. Atlanta, GA: Centers for Disease Control and Prevention. Available at: https://www. cdc. gov/coronavirus/2019-ncov/php/reinfection. html. Accessed February, 11, 2020. Common Investigation Protocol for Investigating Suspected SARS-CoV-2 Reinfection | CDC 

Center for Disease Control and Prevention (2021), COVID-19 Cases and Hospitalizations by COVID-19 Vaccination Status and Previous COVID-19 Diagnosis — California and New York, May–November 2021, COVID-19 Cases and Hospitalizations by COVID-19 Vaccination Status and Previous COVID-19 Diagnosis — California and New York, May–November 2021 | MMWR (cdc.gov) 

Chemaitelly H, Nagalkerke N et al. (2022), Duration of immune protection of SARS-CoV-2 natural infection against reinfection in Qatar, MedRxiv, https://www.medrxiv.org/content/10.1101/2022.07.06.22277306v1 

Chemaitelly, H., Tang, P., Hasan, M. R., AlMukdad, S., Yassine, H. M., Benslimane, F. M., … & Abu-Raddad, L. J. (2021). Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. New England Journal of Medicine, 385(24), e83. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar | NEJM 

Chen Y, Xu Z et al. (2021), New-onset autoimmune phenomena post-COVID-19 vaccination, Immunology First published: 27 December 2021 https://doi.org/10.1111/imm.13443, https://onlinelibrary.wiley.com/doi/10.1111/imm.13443 

Chivese, T., Matizanadzo, J. T., Musa, O. A., Hindy, G., Furuya-Kanamori, L., Islam, N., … & Doi, S. A. (2022). The prevalence of adaptive immunity to COVID-19 and reinfection after recovery–a comprehensive systematic review and meta-analysis. Pathogens and Global Health, 1-13. https://www.tandfonline.com/doi/abs/10.1080/20477724.2022.2029301 

Cho, A., Muecksch, F., Schaefer-Babajew, D., Wang, Z., Finkin, S., Gaebler, C., … & Nussenzweig, M. C. (2021). Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 600(7889), 517-522. https://www.nature.com/articles/s41586-021-04060-7 

Cohen KW, Linderman SL et al. (2021), Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells, Cell Reports Medicine Published:July 14, 2021 DOI:https://doi.org/10.1016/j.xcrm.2021.100354, https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(21)00203-2#%20

Cox RJ, Brokstad KA (2020), Not just antibodies: B cells and T cells mediate immunity to COVID-19, Nature Reviews Immunology volume 20, pages581–582 (2020), https://www.nature.com/articles/s41577-020-00436-4 

Cusick MF, Libbey JE et al. (2021), Molecular mimicry as a mechanism of autoimmune disease, Clin Rev Allergy Immunol 2012 Feb;42(1):102-11, doi: 10.1007/s12016-011-8294-7, https://pubmed.ncbi.nlm.nih.gov/22095454/ 

Dan JM,Mateus J et al. (2021), Immunologicalmemory to SARS-CoV-2 assessed for up to 8 months after infection, SCIENCE 5 Feb 2021 Vol 371, Issue 6529 DOI: 10.1126/science.abf4063, https://www.science.org/doi/10.1126/science.abf4063 

Debes AK, Xiao S et al. (2021), Association of Vaccine Type and Prior SARS-CoV-2 Infection With Symptoms and Antibody Measurements Following Vaccination Among Health Care Workers, JAMA Intern Med. 2021;181(12):1660-1662. doi:10.1001/jamainternmed.2021.4580, https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2782821?guestAccessKey=bda55105-4494-4cda-bac3-ae51e3cde92b&utm_source=silverchair&utm_medium=email&utm_campaign=article_alert-jamainternalmedicine&utm_content=olf&utm_term=081621 

Dehgani-Mobaraki, P., Zaidi, A. K., Yadav, N., Floridi, A., & Floridi, E. (2021). Longitudinal observation of antibody responses for 14 months after SARS-CoV-2 infection. Clinical Immunology, 230, 108814. https://www.sciencedirect.com/science/article/pii/S1521661621001510 

Dennehy KM, Löll E, Dhillon C, Classen JM, Warm TD, Schuierer L, Hyhlik-Dürr A, Römmele C, Gosslau Y, Kling E, Hoffmann R. Comparison of the Development of SARS-Coronavirus-2-Specific Cellular Immunity, and Central Memory CD4+ T-Cell Responses Following Infection versus Vaccination. Vaccines (Basel). 2021 Dec 7;9(12):1439. doi: 10.3390/vaccines9121439. https://pubmed.ncbi.nlm.nih.gov/34960185/ 

Dowell A, Butler MS et al. (2021), Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection, Nature Immunology 22 Dec 2021, https://www.nature.com/articles/s41590-021-01089-8 

Dwyer, C. J., Cloud, C. A., Wang, C., Heidt, P., Chakraborty, P., Duke, T. F., … & Mehrotra, S. (2021). Comparative analysis of antibodies to SARS-CoV-2 between asymptomatic and convalescent patients. Iscience, 24(6), 102489. https://www.sciencedirect.com/science/article/pii/S2589004221004570

Emani, V. R. R., Pallipuram, V. K., Goswami, K. K., Maddula, K. R., Reddy, R., Nakka, A. S., … & Goswami, S. (2022). Increasing SARS-CoV2 cases, hospitalizations and deaths among the vaccinated elderly populations during the Omicron (B. 1.1. 529) variant surge in UK. medRxiv. Increasing SARS-Cov2 Cases, Hospitalizations, and Deaths among the Vaccinated Populations during the Omicron (B.1.1.529) Variant Surge in UK | Abstract (walshmedicalmedia.com) 

Erard D, Villeret F et al. (2021), Autoimmune hepatitis developing after COVID 19 vaccine: presumed guilty?, Science Direct, Clinics and Research in Hepatology and Gastroenterology 15 dec 2021, doi.org/10.1016/j.clinre.2021.101841, https://www.sciencedirect.com/science/article/pii/S2210740121002199?via%3Dihub 

Fatima, Z., Reece, B. R., Moore, J. S., & Means Jr, R. T. (2022). Autoimmune Hemolytic Anemia After mRNA COVID Vaccine. Journal of Investigative Medicine High Impact Case Reports, 10, 23247096211073258. https://journals.sagepub.com/doi/10.1177/23247096211073258 

Ferguson N, Ghani A et al. (2021), Report 50 – Hospitalisation risk for Omicron cases in England, MRC Centre for Global Infectious Disease Analysis – Imperial College London, 22 December 2021, https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-omicron/ 

Ferraresi, A., & Isidoro, C. (2023). Will Omics Biotechnologies Save Us from Future Pandemics? Lessons from COVID-19 for Vaccinomics and Adversomics. Biomedicines, 11(1), 52. Biomedicines | Free Full-Text | Will Omics Biotechnologies Save Us from Future Pandemics? Lessons from COVID-19 for Vaccinomics and Adversomics (mdpi.com) 

Flacco, M. E., Soldato, G., Acuti Martellucci, C., Di Martino, G., Carota, R., Caponetti, A., & Manzoli, L. (2022). Risk of SARS-CoV-2 reinfection 18 months after primary infection: population-level observational study. Frontiers in Public Health, 1074. https://www.frontiersin.org/articles/10.3389/fpubh.2022.884121/full 

Fohse FK, Geckin B et al. (2021), The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses, MedRxiv ID: ppmedrxiv-21256520, https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ppmedrxiv-21256520 

Fondazione Umberto Veronesi, Covid-19, quante sono le reinfezioni?, Magazine, 01/04/2022, Covid-19, quante sono le reinfezioni? | Fondazione Umberto Veronesi (fondazioneveronesi.it) 

Fujimori, J., Miyazawa, K., & Nakashima, I. (2021). Initial clinical manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. Journal of neuroimmunology, 361, 577755. https://www.jni-journal.com/article/S0165-5728(21)00282-4/fulltext

Gallais F, Velay A et al. (2021), Intrafamilial Exposure to SARS-CoV-2 Associated with Cellular Immune Response without Seroconversion, France, EmergInfectDis. 2021 Jan;27(1):113-121. doi: 10.3201/eid2701.203611. Epub 2020 Dec 1, https://pubmed.ncbi.nlm.nih.gov/33261718/ 

Gao Y, Cai C et al. (2022), Ancestral SARS-CoV-2-specific T cells cross-recognize Omicron, Nature Medicine 14 jan 2022 doi: https://doi.org/10.1038/d41591-022-00017-z, https://www.nature.com/articles/d41591-022-00017-z 

Gaebler C, Wang Z, Nussenzweig MC et al. (2021), Evolution of antibody immunity to SARS-CoV-2, Nature volume 591, pages 639–644 (2021), https://www.nature.com/articles/s41586-021-03207-w 

Gazit S, Shlezinger R et al. (2021), Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections, MedRxiv doi: https://doi.org/10.1101/2021.08.24.21262415, https://www.medrxiv.org/content/10.1101/2021.08.24.21262415v1 

Gazit S, Shlezinger R, Perez G, et al. The Incidence of SARS-CoV-2 Reinfection in Persons With Naturally Acquired Immunity With and Without Subsequent Receipt of a Single Dose of BNT162b2 Vaccine: A Retrospective Cohort Study. Ann Intern Med 2022 Feb 15;M21-4130. DOI: 10.7326/M21-4130. The Incidence of SARS-CoV-2 Reinfection in Persons With Naturally Acquired Immunity With and Without Subsequent Receipt of a Single Dose of BNT162b2 Vaccine: A Retrospective Cohort Study: Annals of Internal Medicine: Vol 0, No 0 (acpjournals.org) 

Gazit, S., Shlezinger, R., Perez, G., Lotan, R., Peretz, A., Ben-Tov, A., … & Patalon, T. (2022). SARS-CoV-2 naturally acquired immunity vs. vaccine-induced immunity, reinfections versus breakthrough infections: a retrospective cohort study. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. https://pubmed.ncbi.nlm.nih.gov/35380632/ 

Gazzetta Ufficiale della Repubblica Italiana – DECRETO-LEGGE 7 giugno 2017, n. 73, Gazzetta Ufficiale 

Goldberg, Y., Mandel, M., Woodbridge, Y., Fluss, R., Novikov, I., Yaari, R., … & Huppert, A. (2021). Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel. medRxiv. https://www.medrxiv.org/content/10.1101/2021.04.20.21255670v1 

Goldberg, Y., Mandel, M., Bar-On, Y. M., Bodenheimer, O., Freedman, L. S., Ash, N., … & Milo, R. (2022). Protection and Waning of Natural and Hybrid Immunity to SARS-CoV-2. New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMoa2118946

Gong F, Dai Y, Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals, J Clin Invest. 2020 Dec 1;130(12):6588-6599. doi: 10.1172/JCI141054, https://pubmed.ncbi.nlm.nih.gov/32841212/ 

Grifoni A, Pelosi E, Sette A et al (2020), Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4 + T Cells in COVID-19, Cell 2020 Nov 25;183(5):1340-1353.e16. doi: 10.1016/j.cell.2020.10.001. Epub 2020 Oct 5, https://pubmed.ncbi.nlm.nih.gov/33096020/ 

Hall VJ, Foulkes S (2021), SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN), Lancet 2021 Apr 17;397(10283):1459-1469 doi: 10.1016/S0140-6736(21)00675-9. Epub 2021 Apr 9, 

https://pubmed.ncbi.nlm.nih.gov/33844963/ 

Hall, V., Foulkes, S., Insalata, F., Kirwan, P., Saei, A., Atti, A., … & Hopkins, S. (2022). Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. New England Journal of Medicine. Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection | NEJM 

Hammerman A, Sergienko R, Friger M, et al. Effectiveness of the BNT162b2 Vaccine after Recovery from Covid-19. New Engl J Med 2022, Febr 16. DOI: 10.1056/NEJMoa2119497. https://www.nejm.org/doi/full/10.1056/nejmoa2119497 

Hartley GE, Edwards ESJ et al. (2021), Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence, SCIENCE IMMUNOLOGY•18 Dec 2020•Vol 5, Issue 54•DOI: 10.1126/sciimmunol.abf8891, https://www.science.org/doi/10.1126/sciimmunol.abf8891 

Harvey RA, Rassen JA et al. (2021), Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection, JAMA InternMed. 2021;181(5):672-679. doi:10.1001/jamainternmed.2021.0366, https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2776810?guestAccessKey=3e87dda5-1626-4a94-8716-5b73e3534d44&utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_content=tfl&utm_term=022421 

Haveri, A., Ekström, N., Solastie, A., Virta, C., Österlund, P., Isosaari, E., … & Melin, M. (2021). Persistence of neutralizing antibodies a year after SARS‐CoV‐2 infection in humans. European journal of immunology, 51(12), 3202-3213. https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202149535

Heide J, Schulte S et al. (2021), Broadly directed SARS-CoV-2-specific CD4+ T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19, Plos Pathogens Published: September 16, 2021 doi.org/10.1371/journal.ppat.1009842 https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009842 

Horndler, L., Delgado, P., Romero-Pinedo, S., Quesada, M., Balabanov, I., Laguna-Goya, R., … & Alarcón, B. (2021). Decreased Breadth of the Antibody Response to the Spike Protein Of SARS-COV-2 after Vaccination. medRxiv. https://www.medrxiv.org/content/10.1101/2021.08.12.21261952v3 

Huang W, Wang Y et al. (2021), The significant immune escape of pseudotyped SARS-CoV-2 Variant Omicron, Emerging Microbes & Infections 10 Dec 2021 doi.org/10.1080/22221751.2021.2017757, https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2017757 

Iremli Burçin Gönül et al. (2021), Three Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccine: Post Vaccination ASIA Syndrome 27 May 2021, The Journal of Clinical Endocrinology & Metabolism, Volume 106, Issue 9, September 2021, Pages 2600–2605, https://academic.oup.com/jcem/article/106/9/2600/6287003?login=true 

Ismail, I. I., & Salama, S. (2022). A systematic review of cases of CNS demyelination following COVID-19 vaccination. Journal of neuroimmunology, 362, 577765. https://www.jni-journal.com/article/S0165-5728(21)00292-7/fulltext 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 02/02/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 09/02/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 16/02/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 16/03/2022, Epidemia COVID-19 (iss.it)

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 23/03/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 01/04/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 06/04/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 13/04/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 28/06/2022, Epidemia COVID-19 (iss.it) 

Istituto Superiore di Sanità – IMPATTO DELLA VACCINAZIONE E DELLA PREGRESSA DIAGNOSI SUL RISCHIO DI MALATTIA GRAVE ASSOCIATA A SARS-COV-2 – Mese di riferimento dei casi: 28/11/2022-01/01/2023 Data di pubblicazione: 24/02/2023, 0e8941a8-4cf7-c118-2903-b991619b5773 (iss.it) 

Istituto Superiore di Sanità – IMPATTO DELLA VACCINAZIONE E DELLA PREGRESSA DIAGNOSI SUL RISCHIO DI MALATTIA GRAVE ASSOCIATA A SARS-COV-2 – Un’analisi dei casi diagnosticati nel mese di ottobre 2022; allegato1672329119.pdf (quotidianosanita.it) 

Istituto Superiore di Sanità – REPORT ESTESO ISS COVID-19: SORVEGLIANZA, IMPATTO DELLE INFEZIONI ED EFFICACIA VACCINALE – Aggiornamento nazionale del 03/03/2023, Epidemia COVID-19 (iss.it) 

Ivanova E, Devlin J et al. (2021), Discrete Immune Response Signature to SARS-CoV-2 mRNA Vaccination Versus Infection, CellPress SneakPeek, 3 May 2021, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3838993 

Jarjour NN, Masopust D et al. (2020), T Cell Memory: Understanding COVID-19, Immunity 2021 Jan 12;54(1):14-18. doi: 10.1016/j.immuni.2020.12.009. Epub 2020 Dec 19, https://pubmed.ncbi.nlm.nih.gov/33406391/

Jassat, W., Abdool Karim, S., Ozougwu, L., Welch, R., Mudara, C., Masha, M., … & Groome, M. (2022). Trends in cases, hospitalisation and mortality related to the Omicron BA. 4/BA. 5 sub-variants in South Africa. medRxiv, 2022-08. Trends in Cases, Hospitalization and Mortality Related to the Omicron BA.4/BA.5 Sub-Variants in South Africa – PubMed (nih.gov) 

Jeffery-Smith, A., Burton, A. R., Lens, S., Rees-Spear, C., Davies, J., Patel, M., … & Maini, M. K. (2021). SARS-CoV-2-specific memory B cells can persist in the elderly who have lost detectable neutralising antibodies. The Journal of clinical investigation. https://www.jci.org/articles/view/152042 

Jhon, M., Lee, S. H., Oh, T. H., & Kang, H. C. (2022). Subacute Thyroiditis After Receiving the mRNA COVID-19 Vaccine (Moderna): The First Case Report and Literature Review in Korea. Journal of Korean Medical Science, 37(6). https://jkms.org/DOIx.php?id=10.3346/jkms.2022.37.e39 

Jiang H, Mei Y-F (2021), SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro, Viruses 2021 Oct 13; 13(10):2056; doi: 10.3390/v13102056, https://pubmed.ncbi.nlm.nih.gov/34696485/ 

Joob B, Wiwanitkit V (2021), Expected Viscosity After COVID-19 Vaccination, Hyperviscosity and Previous COVID-19, PubMed Journal List Clin Appl Thromb Hemost Jan-Dec; 27: 10760296211020833. Published online 2021 Jun 18. doi: 10.1177/10760296211020833, https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8216419/#!po=31.8182 

Joshi M, Joshi A et al. (2021) Vaccinating people who have had covid-19: why doesn’t natural immunity count in the US?, BMJ 13 sep 2021, 374 doi: https://doi.org/10.1136/bmj.n2101, https://www.bmj.com/content/374/bmj.n2101/rr-0 

Jung JH, Rha MS et al. (2021), SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stemcell-like memory T cells, NatCommun. 2021 Jun 30;12(1):4043. doi: 10.1038/s41467-021-24377-1, https://pubmed.ncbi.nlm.nih.gov/34193870/ 

Kared H, Redd AD et al. (2021), SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals, J Clin Invest. 2021 Mar 1;131(5):e145476. doi: 10.1172/JCI145476, https://pubmed.ncbi.nlm.nih.gov/33427749/ 

Karlsson AC et al. (2021), The known unknowns of T cell immunity to COVID-19, Sci Immunol. 2020 Nov 18;5(53):eabe8063. doi: 10.1126/sciimmunol.abe8063, https://pubmed.ncbi.nlm.nih.gov/33208380/

Kaulen LD, Doubrovinskaia S et al. (2021), Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series, European Journal of Neurology, 19 October 2021, https://onlinelibrary.wiley.com/doi/10.1111/ene.15147 

Keeton, R., Tincho, M. B., Ngomti, A., Baguma, R., Benede, N., Suzuki, A., … & Riou, C. (2022). T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 1-5. https://www.nature.com/articles/s41586-022-04460-3 

Kim, Y., Zhu, Z., Kochar, P., Gavigan, P., Kaur, D., & Kumar, A. (2022). A Pediatric Case of Sensory Predominant Guillain-Barré Syndrome Following COVID-19 Vaccination. Child Neurology Open, 9, 2329048X221074549. https://journals.sagepub.com/doi/10.1177/2329048X221074549 

Kings College London COVID Symptom Study. Here’s what we know so far about the after effects of the Pfizer COVID vaccine. 2021. https://covid.joinzoe.com/post/covid-vaccine-pfizer-effects (accessed Feb 5, 2021) 

Klein, N. P. (2022). Added Benefit of Covid-19 Vaccination after Previous Infection. New England Journal of Medicine, 386(13), 1278-1279. https://www.nejm.org/doi/full/10.1056/NEJMe2201380 

Knol, M. J., Backer, J. A., de Melker, H. E., van den Hof, S., & de Gier, B. (2022). Transmissibility of SARS-CoV-2 among fully vaccinated individuals. The Lancet Infectious Diseases, 22(1), 16-17. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00768-4/fulltext 

Kojima N, Klausner JD (2021), Protective immunity after recovery from SARS-CoV-2 infection, The Lancet Infectious Diseases, DOI: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00676-9/fulltext 

Kojima N, Shrestha NK and Klausner JD et al. (2021), A Systematic Review of the Protective Effect of Prior SARS-CoV-2 Infection on RepeatInfection, Eval Health Prof. 2021 Dec; 44(4): 327–332. 

Published online 2021 Sep 30. doi: 10.1177/01632787211047932, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564250/ 

Krammer, F., Srivastava, K., Alshammary, H., Amoako, A. A., Awawda, M. H., Beach, K. F., … & Simon, V. (2021). Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. New England Journal of Medicine, 384(14), 1372-1374. https://www.nejm.org/doi/full/10.1056/NEJMc2101667 

Kroemer M, Spehner L et al. (2021), COVID-19 patients display distinct SARS-CoV-2 specific T-cellresponses according to disease severity, Infect. 2021 Feb;82(2):282-327. doi: 10.1016/j.jinf.2020.08.036. Epub 2020 Aug 25, https://pubmed.ncbi.nlm.nih.gov/32853599/   

Krsak M., Harry BL et al. (2021), Postinfectious Immunity After COVID-19 and Vaccination Against SARS-CoV-2, Viral ImmunologyVol. 34, No. 8 doi.org/10.1089/vim.2021.0054, https://www.liebertpub.com/doi/10.1089/vim.2021.0054 

Kuhlmann, C., Mayer, C. K., Claassen, M., Maponga, T., Burgers, W. A., Keeton, R., … & Preiser, W. (2022). Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. The Lancet. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765759/ 

Lavezzo E, Franchin E et al. (2020), Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’, Nature volume 584, pages 425–429 (2020), https://www.nature.com/articles/s41586-020-2488-1 

Le Bert N, Clapham HE et al. (2021), Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection, PubMed PMID: 33646265 PMCID: PMC7927662 DOI: 10.1084/jem.20202617, https://pubmed.ncbi.nlm.nih.gov/33646265/ 

Le Bert N, Tan TA et al. (2020), SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls, Nature 2020 Aug;584(7821):457-462. doi: 10.1038/s41586-020-2550-z. Epub 2020 Jul 15, https://pubmed.ncbi.nlm.nih.gov/32668444/ 

Ledford H (2022), ‘Killer’ immune cells still recognize Omicron variant, Nature 11 gen 2022, doi: https://doi.org/10.1038/d41586-022-00063-0, https://www.nature.com/articles/d41586-022-00063-0 

Lehmann, A. A., Kirchenbaum, G. A., Zhang, T., Reche, P. A., & Lehmann, P. V. (2021). Deconvoluting the T Cell Response to SARS-CoV-2: Specificity Versus Chance and Cognate Cross-Reactivity. Frontiers in immunology, 12. https://pubmed.ncbi.nlm.nih.gov/34127926/ 

León, T. M., Dorabawila, V., Nelson, L., Lutterloh, E., Bauer, U. E., Backenson, B., … & Rosenberg, E. S. (2022). COVID-19 cases and hospitalizations by COVID-19 vaccination status and previous COVID-19 diagnosis—California and New York, May–November 2021. https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e1.htm 

Letizia, A. G., Ge, Y., Vangeti, S., Goforth, C., Weir, D. L., Kuzmina, N. A., … & Sealfon, S. C. (2021). SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study. The Lancet Respiratory Medicine, 9(7), 712-720. https://www.sciencedirect.com/science/article/pii/S2213260021001582

Lin, D. Y., Gu, Y., Xu, Y., Zeng, D., Wheeler, B., Young, H., … & Moore, Z. (2022). Effects of Vaccination and Previous Infection on Omicron Infections in Children. New England Journal of Medicine. Effects of Vaccination and Previous Infection on Omicron Infections in Children – PubMed (nih.gov) 

Liu, Y., Shao, Z., & Wang, H. (2022). SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. Thrombosis research, 209, 75-79. https://www.thrombosisresearch.com/article/S0049-3848(21)00555-7/fulltext 

Li Zhang et al. (2021), The significant immune escape of pseudotyped SARS-CoV-2 Variant Omicron, Emerging Microbes & Infections 10 Dec 2021 doi.org/10.1080/22221751.2021.2017757, https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2017757 

Lozano-Ojalvo D, Camara C et al. (2021), Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals, Cell Reports Published:August 03, 2021DOI: https://doi.org/10.1016/j.celrep.2021.109570, https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01004-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124721010044%3Fshowall%3Dtrue 

Luxi N, Giovanazzi A et al. (2021), COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety, Drug Safety The Official Journal of the International Society of Pharmacovigilance [ISoP], DOIhttps://doi.org/10.1007/s40264-021-01131-6, https://link.springer.com/article/10.1007/s40264-021-01131-6 

Lyski ZL, Brunton AE et al. (2021), SARS-CoV-2 specific memory B-cells from individuals with diverse disease severities recognize SARS-CoV-2 variants of concern, medRxiv. 2021 Jun 3;2021.05.28.21258025. doi: 10.1101/2021.05.28.21258025, https://pubmed.ncbi.nlm.nih.gov/34100028/ 

Manzoli L, Flacco ME, Acuti Martellucci C, Soldato G et al. (2021), Rate of reinfections after SARS-CoV-2 primary infection in the population of an Italian province: a cohort study, Journal of Public Health, fdab346, https://academic.oup.com/jpubhealth/advance-article/doi/10.1093/pubmed/fdab346/6366077 

Martner, A., Grauers Wiktorin, H., Törnell, A., Ringlander, J., Arabpour, M., Lindh, M., … & Hellstrand, K. (2022). Transient and durable T cell reactivity after COVID-19. Proceedings of the National Academy of Sciences, 119(30), e2203659119. Brief Report: Transient and durable T cell reactivity after COVID-19 – PMC (nih.gov)

Mathioudakis AG, Ghrew M et al. (2021), Self-Reported Real-World Safety and Reactogenicity of COVID-19 Vaccines: A Vaccine Recipient Survey, PMID: 33803014 PMCID: PMC8002738 DOI: 10.3390/life11030249, https://pubmed.ncbi.nlm.nih.gov/33803014/ 

Matsumoto, Y., Ohyama, A., Kubota, T., Ikeda, K., Kaneko, K., Takai, Y., … & Aoki, M. (2022). MOG Antibody-Associated Disorders Following SARS-CoV-2 Vaccination: A Case Report and Literature Review. Frontiers in Neurology, 213. https://www.frontiersin.org/articles/10.3389/fneur.2022.845755/full 

Matsuo, T., Honda, H., Tanaka, T., Uraguchi, K., Kawahara, M., & Hagiya, H. (2022). COVID-19 mRNA Vaccine–Associated Uveitis Leading to Diagnosis of Sarcoidosis: Case Report and Review of Literature. Journal of Investigative Medicine High Impact Case Reports, 10, 23247096221086450. https://journals.sagepub.com/doi/10.1177/23247096221086450 

McGonagle, D. G. (2022). Health-care workers recovered from natural SARS-CoV-2 infection should be exempt from mandatory vaccination edicts. The Lancet Rheumatology. https://www.thelancet.com/journals/lanrhe/article/PIIS2665-9913(22)00038-8/fulltext 

McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, Liu J, Peter L, Atyeo C, Zhu A, Bondzie EA, Dagotto G, Gebre MS, Jacob-Dolan C, Li Z, Nampanya F, Patel S, Pessaint L, Van Ry A, Blade K, Yalley-Ogunro J, Cabus M, Brown R, Cook A, Teow E, Andersen H, Lewis MG, Lauffenburger DA, Alter G, Barouch DH. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021 Feb;590(7847):630-634. doi: 10.1038/s41586-020-03041-6. Epub 2020 Dec 4. https://pubmed.ncbi.nlm.nih.gov/33276369/ 

Medic, S., Anastassopoulou, C., Lozanov-Crvenkovic, Z., Vukovic, V., Dragnic, N., Petrovic, V., … & Ioannidis, J. (2022). Risk and severity of SARS-CoV-2 reinfections during 2020-2022 in Vojvodina, Serbia: a population-level study. medRxiv. https://www.medrxiv.org/content/10.1101/2022.04.08.22273571v1 

Menni C, Klaser K et al. (2021), Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study, Lancet InfectDis. 2021 Jul; 21(7): 939-949. doi: 10.1016/S1473-3099(21)00224-3. Epub 2021 Apr 27, https://pubmed.ncbi.nlm.nih.gov/33930320/

Milano G, Gal J et al. (2021), Myocarditis and COVID-19 mRNA vaccines: a mechanistic hypothesis involving dsRNA, Future Medicine 6 Dec 2021 Published Online:6 Dec 2021https://doi.org/10.2217/fvl-2021-0280, https://www.futuremedicine.com/doi/10.2217/fvl-2021-0280 

Minervina AA, Komech EA et al. (2021), Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection, Elife. 2021 Jan 5;10:e63502. doi: 10.7554/eLife.63502, https://pubmed.ncbi.nlm.nih.gov/33399535/ 

Ministero della Salute, Portale Covid19, FAQ, https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioFaqNuovoCoronavirus.jsp?lingua=it%20aliano&id=255 

Mishra BK et al. (2021), Natural immunity against COVID-19 significantly reduces the risk of reinfection: findings from a cohort of sero-survey participants, MedRxiv doi: https://doi.org/10.1101/2021.07.19.21260302, https://www.medrxiv.org/content/10.1101/2021.07.19.21260302v1 

Molodtsov, I., Kegeles, E., Mitin, A., Mityaeva, O., Musatova, O., Panova, A., … & Vasilieva, E. (2021). SARS-CoV-2 specific T cells and antibodies in COVID-19 protection: a prospective study. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/ppcovidwho-295514 

Moss, P. (2022). The T cell immune response against SARS-CoV-2. Nature immunology, 1-8. https://www.nature.com/articles/s41590-021-01122-w 

Munro, A. P., Janani, L., Cornelius, V., Aley, P. K., Babbage, G., Baxter, D., … & White, R. (2021). Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. The Lancet, 398(10318), 2258-2276. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02717-3/fulltext 

Murchu EO, Byrne P et al. (2021), Quantifying the risk of SARS-CoV-2 reinfection over time, Rev Med Virol 2021 May 27;e2260. doi: 10.1002/rmv.2260, https://pubmed.ncbi.nlm.nih.gov/34043841/ 

Murphy WJ, Longo DL (2021), A Possible Role for Anti-idiotype Antibodies in SARS-CoV-2 Infection and Vaccination, The New England Journal of Medicine, November 24 2021 DOI: 10.1056/NEJMcibr2113694, https://www.nejm.org/doi/full/10.1056/NEJMcibr2113694

Nahass, G. R., Salomon-Shulman, R. E., Blacker, G., Haider, K., Brotherton, R., Teague, K., … & Tal, M. C. (2021). Intramuscular SARS-CoV-2 vaccines elicit varying degrees of plasma and salivary antibody responses as compared to natural infection. medRxiv. https://www.medrxiv.org/content/10.1101/2021.08.22.21262168v1 

Nakatani, S., Mori, K., Morioka, F., Hirata, C., Tsuda, A., Uedono, H., … & Emoto, M. (2022). New-onset kidney biopsy-proven IgA vasculitis after receiving mRNA-1273 COVID-19 vaccine: case report. CEN Case Reports, 1-5. https://link.springer.com/article/10.1007/s13730-021-00677-9 

Ndeupen, S., Qin, Z., Jacobsen, S., Bouteau, A., Estanbouli, H., & Igyártó, B. Z. (2021). The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Iscience, 24(12), 103479. https://pubmed.ncbi.nlm.nih.gov/34841223/ 

Neidleman, J., Luo, X., McGregor, M., Xie, G., Murray, V., Greene, W. C., … & Roan, N. R. (2021). mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. Elife, 10, e72619. https://elifesciences.org/articles/72619 

New York State – Department of Health (2022), Covid 19 Reinfection Data, https://coronavirus.health.ny.gov/covid-19-reinfection-data 

Ng, O. W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti, A., & Tan, Y. J. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 34(17), 2008-2014. https://www.sciencedirect.com/science/article/pii/S0264410X16002589 

Nguyen-Contant, P., Embong, A. K., Kanagaiah, P., Chaves, F. A., Yang, H., Branche, A. R., … & Sangster, M. Y. (2020). S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio, 11(5), e01991-20. https://journals.asm.org/doi/full/10.1128/mBio.01991-20 

Nielsen, S. S., Vibholm, L. K., Monrad, I., Olesen, R., Frattari, G. S., Pahus, M. H., … & Tolstrup, M. (2021). SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine, 68, 103410. https://www.sciencedirect.com/science/article/pii/S2352396421002036 

NIH National Institute of Health (2021), Lasting immunity found after recovery from COVID-19, https://www.nih.gov/news-events/nih-research-matters/lasting-immunity-found-after-recovery-covid-19#main-content

Nordström, P., Ballin, M., & Nordström, A. (2022). Risk of SARS-CoV-2 reinfection and COVID-19 hospitalisation in individuals with natural and hybrid immunity: a retrospective, total population cohort study in Sweden. The Lancet Infectious Diseases. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00143-8/fulltext 

Nyberg, T., Ferguson, N. M., Nash, S. G., Webster, H. H., Flaxman, S., Andrews, N., … & Thelwall, S. (2022). Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B. 1.1. 529) and delta (B. 1.617. 2) variants in England: a cohort study. The Lancet, 399(10332), 1303-1312. https://www.sciencedirect.com/science/article/pii/S0140673622004627 

Office of National Statistics, UK, 19 January 2022, https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveycharacteristicsofpeopletestingpositiveforcovid19uk/19january2022#reinfections-with-covid-19-uk 

Oster, M. E., Shay, D. K., Su, J. R., Gee, J., Creech, C. B., Broder, K. R., … & Shimabukuro, T. T. (2022). Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA, 327(4), 331-340. https://jamanetwork.com/journals/jama/fullarticle/2788346 

Pang, E., Ghosh, S., Chemmanam, T., Grove, C., & Phillips, T. (2022). Cerebral arterial and venous thrombosis due to COVID-19 vaccine-induced immune thrombotic thrombocytopenia. BMJ Case Reports CP, 15(1), e245445. https://casereports.bmj.com/content/15/1/e245445 

Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., … & Hippisley-Cox, J. (2022). Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex. Circulation, 146(10), 743-754. Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex – PubMed (nih.gov) 

Peng Y, Mentzer AJ et al. (2021), Broad and strong memory CD4 + and CD8 + T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19, NatImmunol. 2020 Nov;21(11):1336-1345. doi: 10.1038/s41590-020-0782-6. Epub 2020 Sep 4, https://pubmed.ncbi.nlm.nih.gov/32887977/ 

Petruzzi, M., Galleggiante, S., Messina, S., & Della Vella, F. (2022). Oral erythema multiforme after Pfizer-BioNTech COVID-19 vaccination: a report of four cases. BMC Oral Health, 22(1), 1-8. https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02124-2

Pfizer, Emergency Use Authorization (EUA) for an Unapproved Product Review Memorandum, https://www.fda.gov/media/144416/download 

Pfizer, Request for priority review covid-19 vaccine (bnt162, pf-07302048) bla 125742 may 2021, https://phmpt.org/wp-content/uploads/2022/03/125742_S1_M1_priority-review-request-1.pdf 

Pilz S, Chakeri A et al. (2021), SARS‐CoV‐2 re‐infection risk in Austria, Pub Med 21 feb 2021 PMCID: PMC7988582 PMID: 33583018, https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7988582/ 

Pilz, S., Theiler-Schwetz, V., Trummer, C., Krause, R., & Ioannidis, J. (2022). SARS-CoV-2 Reinfections: Overview of Efficacy and Duration of Natural and Hybrid Immunity. Available at SSRN 4005459. https://www.sciencedirect.com/science/article/pii/S0013935122002389 

Platton, S., Schönborn, L., Charrot, S., Badat, M., Boot, J., McDonald, V., … & MacCallum, P. (2021). Vaccine-induced immune thrombocytopenia and thrombosis: The decline in anti-platelet factor 4 antibodies is assay-dependent. British journal of haematology. https://onlinelibrary.wiley.com/doi/10.1111/bjh.18022 

Pla Peris, B., Merchante Alfaro, A. Á., Maravall Royo, F. J., Abellán Galiana, P., Pérez Naranjo, S., & González Boillos, M. (2022). Thyrotoxicosis following SARS-COV-2 vaccination: a case series and discussion. Journal of endocrinological investigation, 1-7. https://link.springer.com/article/10.1007/s40618-022-01739-0 

Pujol A, Gómez LA et al. (2021), Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis, Journal of Endocrinological Investigation 18 November 2021, https://link.springer.com/article/10.1007/s40618-021-01707-0 

Radbruch A, Chang HD (2021), A long-term perspective on immunity to COVID, Nature 595, 359-360 (2021), doi: https://doi.org/10.1038/d41586-021-01557-z, https://www.nature.com/articles/d41586-021-01557-z#ref-CR8 

Rahman S, Rahman MM, Miah M, Begum MN, Sarmin M, Mahfuz M, Hossain ME, Rahman MZ, Chisti MJ, Ahmed T, Arifeen SE, Rahman M. COVID-19 reinfections among naturally infected and vaccinated individuals. Sci Rep. 2022 Jan 26;12(1):1438. doi: 10.1038/s41598-022-05325-5. https://pubmed.ncbi.nlm.nih.gov/35082344/

Raw RK, Kelly CA et al. (2021), Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination, Elsevier Public Health Emergency Collection, PMC8164507, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164507/ 

Redd AD, Nardin A et al. (2021), CD8+ T cell responses in COVID-19 convalescent individuals target conserved epitopes from multiple prominent SARS-CoV-2 Circulating Variants, Open Forum Infectious Diseases, Volume 8, Issue 7, July 2021, ofab143, https://academic.oup.com/ofid/article/8/7/ofab143/6189113 

Reddy, K. S. (2021). Boosters appear effective, but are they always needed?. The Lancet, 398(10316), 2055-2057. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02388-6/fulltext 

Reynolds, C. J., Pade, C., Gibbons, J. M., Otter, A. D., Lin, K. M., Muñoz Sandoval, D., … & Moon, J. C. (2022). Immune boosting by B. 1.1. 529 (Omicron) depends on previous SARS-CoV-2 exposure. Science, 377(6603), eabq1841. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure | Science 

Rodda LB, Netland J et al. (2021), Functional SARS-CoV-2-specific immune memory persists after mild COVID-19, Cell Article VOLUME 184, ISSUE 1, P169-183.E17, JANUARY 07, 2021, https://www.cell.com/cell/fulltext/S0092-8674(20)31565-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867420315658%3Fshowall%3Dtrue 

Rojas M, Restrepo-Jiménez P et al. (2018), Molecular mimicry and autoimmunity, Journal of Autoimmunity Volume 95, December 2018, Pages 100-123, https://doi.org/10.1016/j.jaut.2018.10.012, https://www.sciencedirect.com/science/article/pii/S0896841118305365 

Röltgen, K., Nielsen, S. C., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., … & Boyd, S. D. (2022). Immune imprinting, breadth of variant recognition and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. https://www.sciencedirect.com/science/article/pii/S0092867422000769 

Romero-Ibarguengoitia, M. E., González-Cantú, A., Pozzi, C., Levi, R., Mollura, M., Sarti, R., … & Rescigno, M. (2022). Analysis of immunization time, amplitude, and adverse events of seven different vaccines against SARS-CoV-2 across four different countries. medRxiv. Frontiers | Analysis of immunization time, amplitude, and adverse events of seven different vaccines against SARS-CoV-2 across four different countries (frontiersin.org)

Ronchini C, Gandini S, Pasqualato S, Mazzarella L, Facciotti F, Mapelli M, et al. (2022), Lower probability and shorter duration of infection after COVID-19 vaccine correlate with anti-SARSCoV-2 circulating IgGs. PLoS ONE 17(1): e0263014. https://doi.org/10.1371/journal.pone.0263014. Lower probability and shorter duration of infections after COVID-19 vaccine correlate with anti-SARS-CoV-2 circulating IgGs (plos.org) 

Russell, M. W., Moldoveanu, Z., Ogra, P. L., & Mestecky, J. (2020). Mucosal immunity in COVID-19: a neglected but critical aspect of SARS-CoV-2 infection. Frontiers in Immunology, 11, 3221. https://internal-journal.frontiersin.org/articles/10.3389/fimmu.2020.611337/full 

Sachinidis A (2021), COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells, International Journal of Rheumatic Diseases 12 nov 2021, https://onlinelibrary.wiley.com/doi/10.1111/1756-185X.14238 

Samanovic, M. I., Cornelius, A. R., Gray-Gaillard, S. L., Allen, J. R., Karmacharya, T., Wilson, J. P., … & Sedaghat Herati, R. (2021). Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals. Science translational medicine, eabi8961. https://www.science.org/doi/10.1126/scitranslmed.abi8961 

Sasaki, H., Itoh, A., Watanabe, Y., Nakajima, Y., Saisho, Y., Irie, J., … & Itoh, H. Newly developed type 1 diabetes after COVID‐19 vaccination: A case report. Journal of Diabetes Investigation. https://onlinelibrary.wiley.com/doi/10.1111/jdi.13757 

Scandinavian Journal of Immunology, P. Polykretis, Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID-19 and the need for biodistribution evaluations, 17 march 2022, https://onlinelibrary.wiley.com/doi/10.1111/sji.13160 

Scollan ME, Breneman A et al. (2021), Alopecia areata after SARS-CoV-2 vaccination, Elsevier Med Jaad Case Report – PubMed, JAAD Case Rep. 2022 Feb; 20: 1–5, https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8673931/ 

Sekine T, Potti AP et al. (2020), Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19, Cell Article VOLUME 183, ISSUE 1, P158-168.E14, OCTOBER 01, 2020, https://www.cell.com/cell/fulltext/S0092-8674(20)31008-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867420310084%3Fshowall%3Dtrue#%20 

Seneff, S., Nigh, G., Kyriakopoulos, A. M., & McCullough, P. A. (2022). Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food and Chemical Toxicology, 164, 113008. 

Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs – ScienceDirect

Sheehan, M. M., Reddy, A. J., & Rothberg, M. B. (2021). Reinfection rates among patients who previously tested positive for coronavirus disease 2019: a retrospective cohort study. Clinical Infectious Diseases, 73(10), 1882-1886. Reinfection Rates Among Patients Who Previously Tested Positive for Coronavirus Disease 2019: A Retrospective Cohort Study | Clinical Infectious Diseases | Oxford Academic (oup.com)

Shenai, M. B., Rahme, R., & Noorchashm, H. (2021). Equivalency of Protection from Natural Immunity in COVID-19 Recovered Versus Fully Vaccinated Persons: A Systematic Review and Pooled Analysis. Cureus, 13(10). https://www.cureus.com/articles/72074-e 

Shrestha, N. K., Burke, P. C., Nowacki, A. S., Terpeluk, P., & Gordon, S. M. (2022). Necessity of COVID-19 Vaccination in Persons Who Have Already Had COVID-19. Clinical Infectious Diseases. https://pubmed.ncbi.nlm.nih.gov/35028662/ 

Sriwastava, S., Shrestha, A. K., Khalid, S. H., Colantonio, M. A., Nwafor, D., & Srivastava, S. (2021). Spectrum of Neuroimaging Findings in Post-COVID-19 Vaccination: A Case Series and Review of Literature. Neurology International, 13(4), 622-639. https://www.mdpi.com/2035-8377/13/4/61/htm 

Sheikh-Mohamed, S., Isho, B., Chao, G. Y., Zuo, M., Cohen, C., Lustig, Y., … & Gommerman, J. L. (2022). Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal immunology, 1-10. https://www.nature.com/articles/s41385-022-00511-0 

Shrotri, M., van Schalkwyk, M. C., Post, N., Eddy, D., Huntley, C., Leeman, D., … & Ismail, S. A. (2021). T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS One, 16(1), e0245532, https://pubmed.ncbi.nlm.nih.gov/33493185/ 

Siggins, M.K. et al. (2021), Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses, Science Direct, Vol. 29, Issue 7, July 2021, Pages 648-662 doi.org/10.1016/j.tim.2021.03.016, https://www.sciencedirect.com/science/article/pii/S0966842X21000925/ 

Steiner S, Schwarz T et al. (2021), Reactive T Cells in Convalescent COVID-19 Patients With Negative SARS-CoV-2 Antibody Serology, Front Immunol. 2021 Jul 12;12:687449. doi: 10.3389/fimmu.2021.687449. eCollection 2021, https://pubmed.ncbi.nlm.nih.gov/34322120/ 

Sterlin, D., Mathian, A., Miyara, M., Mohr, A., Anna, F., Claër, L., … & Gorochov, G. (2021). IgA dominates the early neutralizing antibody response to SARS-CoV-2. Science translational medicine, 13(577). https://www.science.org/doi/10.1126/scitranslmed.abd2223

Sureshchandra, S., Lewis, S. A., Doratt, B. M., Jankeel, A., Ibraim, I. C., & Messaoudi, I. (2021). Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI insight, 6(24). https://insight.jci.org/articles/view/153201?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JCI_Insight_TrendMD_0 

Swadling L, Diniz MO et al. (2021), Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2, Nature 10 Nov 2021, https://www.nature.com/articles/s41586-021-04186-8 

Talotta, R. (2021). Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to “potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases”. Clinical Immunology (Orlando, Fla.), 224, 108665. https://www.sciencedirect.com/science/article/pii/S1521661621000024 

Tan, C. Y., Toh, T. H., Toh, Y. F., Wong, K. T., Shahrizaila, N., & Goh, K. J. (2022). A temporal association between COVID‐19 vaccination and immune‐mediated necrotizing myopathy. Muscle & Nerve. https://onlinelibrary.wiley.com/doi/10.1002/mus.27531 

Tan, S. T., Kwan, A. T., Rodríguez-Barraquer, I., Singer, B. J., Park, H. J., Lewnard, J. A., … & Lo, N. C. (2023). Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave. Nature Medicine, 1-8. Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave | Nature Medicine 

Tarke A, Sidney J et al. (2021), Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals, Cell Reports Medicine Volume 2, Issue 7, 20 July 2021, 100355, https://www.sciencedirect.com/science/article/pii/S2666379121002044 

Tavukcuoglu E, Horzum U et al. (2021), Functional responsiveness of memory T cells from COVID-19 patients, Cell Immunol. 2021 Jul;365:104363. doi: 10.1016/j.cellimm.2021.104363. Epub 2021 Apr 17, https://pubmed.ncbi.nlm.nih.gov/33905951/ 

Team, F., & Lim, S. S. (2022). Past SARS-CoV-2 infection protection against reinfection: a systematic review and meta-analysis. SS, Past SARS-CoV-2 Infection Protection Against Reinfection: A Systematic Review and Meta-Analysis. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis – The Lancet

Tong, P., Gautam, A., Windsor, I. W., Travers, M., Chen, Y., Garcia, N., … & Wesemann, D. R. (2021). Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 184(19), 4969-4980. Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike – ScienceDirect 

Townsend JP, Hassler HB et al. (2021), The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study, The Lancet October 01, 2021, DOI: https://doi.org/10.1016/S2666-5247(21)00219-6, https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(21)00219-6/fulltext 

Tré-Hardy, M., Cupaiolo, R., Papleux, E., Wilmet, A., Horeanga, A., Antoine-Moussiaux, T., … & Blairon, L. (2021). Reactogenicity, safety and antibody response, after one and two doses of mRNA-1273 in seronegative and seropositive healthcare workers. The Journal of Infection https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8012163/ 

Tseng, H. F., Ackerson, B. K., Luo, Y., Sy, L. S., Talarico, C. A., Tian, Y., … & Qian, L. (2022). Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nature Medicine, 28(5), 1063-1071. Author Correction: Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants | Nature Medicine 

Tsumiyama K, Miyazaki Y et al. (2009), Self-Organized Criticality Theory of Autoimmunity, PlosOne Published: December 31, 2009, doi.org/10.1371/journal.pone.0008382, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008382 

Turner JS, Kim W et al. (2021), SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans, Nature volume 595, pages 421–425 (2021), https://www.nature.com/articles/s41586-021-03647-4 

U.S. National Library of Medicine – ClinicalTrial.gov (22 dec 2021), Randomized Trial of COVID-19 Booster Vaccinations (Cobovax Study), https://clinicaltrials.gov/ct2/show/NCT05057169 

Vitale, J., Mumoli, N., Clerici, P., De Paschale, M., Evangelista, I., Cei, M., & Mazzone, A. (2021). Assessment of SARS-CoV-2 Reinfection 1 Year After Primary Infection in a Population in Lombardy, Italy. JAMA internal medicine, https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2780557 

Wang, L., Zhou, T., Zhang, Y., Yang, E. S., Schramm, C. A., Shi, W., … & Misasi, J. (2021). Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 373(6556), eabh1766. https://www.science.org/doi/full/10.1126/science.abh1766

Watad A, Bragazzi NL et al. (2019), Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) demonstrates distinct autoimmune and autoinflammatory disease associations according to the adjuvant subtype: Insights from an analysis of 500 cases, Clinical Immunology Volume 203, June 2019, Pages 1-8, doi.org/10.1016/j.clim.2019.03.007, https://www.sciencedirect.com/science/article/abs/pii/S1521661619301305 

Wajnberg, A., Amanat, F., Firpo, A., Altman, D. R., Bailey, M. J., Mansour, M., … & Cordon-Cardo, C. (2020). Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science, 370(6521), 1227-1230. https://www.science.org/doi/full/10.1126/science.abd7728 

Wei J, Matthews PC et al. (2021), Anti-spike antibody response to natural SARS-CoV-2 infection in the general population, Nature Communications volume 12, Article number: 6250 (29 oct 2021), 

https://www.nature.com/articles/s41467-021-26479-2 

Westmeier J, Paniskaki K et al. (2020), Impaired Cytotoxic CD8 + T Cell Response in Elderly COVID-19 Patients, mBio 2020 Sep 18;11(5):e02243-20. doi: 10.1128/mBio.02243-20, https://pubmed.ncbi.nlm.nih.gov/32948688/ 

Wen, S., Huang, K., Zhu, H., Li, P., Zhou, L., & Feng, L. (2022). Case Report: Anti-NF186+ CIDP After Receiving the Inactivated Vaccine for Coronavirus Disease (COVID-19). Frontiers in Neurology, 13. https://www.frontiersin.org/articles/10.3389/fneur.2022.838222/full 

Winklmeier, S., Eisenhut, K., Taskin, D., Rübsamen, H., Gerhards, R., Schneider, C., … & Meinl, E. (2022). Persistence of functional memory B cells recognizing SARS-CoV-2 variants despite loss of specific IgG. Iscience, 25(1), 103659. https://www.cell.com/iscience/fulltext/S2589-0042(21)01629-1#secsectitle0040 

Wolter, N., Jassat, W., Walaza, S., Welch, R., Moultrie, H., Groome, M., … & Cohen, C. (2022). Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. The Lancet. https://www.sciencedirect.com/science/article/pii/S0140673622000174 

Yang, Y., Yang, M., Peng, Y. et al. Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol (2022). doi.org/10.1038/s41564-021-01051-2, https://www.nature.com/articles/s41564-021-01051-2 

Yokote, A., Fujioka, S., Takahashi, N. et al., (2022), Polymyalgia Rheumatica Following COVID-19 Vaccination: A Case Report, The Japanese Society of Internal Medicine. https://www.jstage.jst.go.jp/article/internalmedicine/advpub/0/advpub_8934-21/_article

Zappa, M., Verdecchia, P., Spanevello, A., Visca, D., & Angeli, F. (2021). Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine. European Journal of Internal Medicine, 90, 111-113. Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine – European Journal of Internal Medicine (ejinme.com) 

Zheng HY, Xu M et al. (2020), Longitudinal transcriptomeanalyses show robust T cell immunity during recovery from COVID-19, SignalTransduct Target Ther. 2020 Dec 24;5(1):294. doi: 10.1038/s41392-020-00457-4, https://pubmed.ncbi.nlm.nih.gov/33361761/ 

Zhong, D., Xiao, S., Debes, A. K., Egbert, E. R., Caturegli, P., Colantuoni, E., & Milstone, A. M. (2021). Durability of Antibody Levels After Vaccination With mRNA SARS-CoV-2 Vaccine in Individuals With or Without Prior Infection. Jama, 326(24), 2524-2526. Durability of Antibody Levels After Vaccination With mRNA SARS-CoV-2 Vaccine in Individuals With or Without Prior Infection | Infectious Diseases | JAMA | JAMA Network 

Zhongfang Wang, Xiaoyun Yang, Jiaying Zhong, Yumin Zhou, Zhiqiang Tang, Haibo Zhou, Jun He, Xinyue Mei, Yonghong Tang, Bijia Lin, Zhenjun Chen, James McCluskey, Ji Yang, Alexandra J. Corbett & Pixin Ran. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature Communications volume 12, Article number: 1724 (2021) https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7979809/ 

Zlotnik, Y., Gadoth, A., Abu-Salameh, I., Horev, A., Novoa, R., & Ifergane, G. (2022). Case Report: Anti-LGI1 Encephalitis Following COVID-19 Vaccination. Frontiers in Immunology, 5749. https://www.frontiersin.org/articles/10.3389/fimmu.2021.813487/full 

Zuo, J., Dowell, A. C., Pearce, H., Verma, K., Long, H. M., Begum, J., … & Moss, P. (2021). Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nature immunology, 22(5), 620-626. https://pubmed.ncbi.nlm.nih.gov/33674800/ 

https://www.samrc.ac.za/news/tshwane-district-omicron-variant-patient-profile-early-features 

https://www.iltempo.it/attualita/2021/12/05/news/willem-hanekom-variante-omicron-covid-malattia-lieve-reinfezioni-dati-vaccini-studio-sudafrica-29687108/ 

https://www.bbc.com/news/av/uk-59532837 

Coordinamento Comitati Guariti da Covid www.immunipersempre.com info@immunipersempre.com www.guaritidiscriminati.it guaritidiscriminati@gmail.com www.associazioneacu.org/la-rete-nazionale-acu/regione-marche acumarcheregione@gmail.com

 

Altri articoli interessanti

Social Media Auto Publish Powered By : XYZScripts.com